skip to main content


Search for: All records

Creators/Authors contains: "Ozersky, Ted"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. The productivity of aquatic ecosystems depends on the supply of limiting nutrients. The invasion of the Laurentian Great Lakes, the world’s largest freshwater ecosystem, by dreissenid (zebra and quagga) mussels has dramatically altered the ecology of these lakes. A key open question is how dreissenids affect the cycling of phosphorus (P), the nutrient that limits productivity in the Great Lakes. We show that a single species, the quagga mussel, is now the primary regulator of P cycling in the lower four Great Lakes. By virtue of their enormous biomass, quagga mussels sequester large quantities of P in their tissues and dramatically intensify benthic P exchanges. Mass balance analysis reveals a previously unrecognized sensitivity of the Great Lakes ecosystem, where P availability is now regulated by the dynamics of mussel populations while the role of the external inputs of phosphorus is suppressed. Our results show that a single invasive species can have dramatic consequences for geochemical cycles even in the world’s largest aquatic ecosystems. The ongoing spread of dreissenids across a multitude of lakes in North America and Europe is likely to affect carbon and nutrient cycling in these systems for many decades, with important implications for water quality management.

     
    more » « less
  3. null (Ed.)
    Abstract Nearshore (littoral) habitats of clear lakes with high water quality are increasingly experiencing unexplained proliferations of filamentous algae that grow on submerged surfaces. These filamentous algal blooms (FABs) are sometimes associated with nutrient pollution in groundwater, but complex changes in climate, nutrient transport, lake hydrodynamics, and food web structure may also facilitate this emerging threat to clear lakes. A coordinated effort among members of the public, managers, and scientists is needed to document the occurrence of FABs, to standardize methods for measuring their severity, to adapt existing data collection networks to include nearshore habitats, and to mitigate and reverse this profound structural change in lake ecosystems. Current models of lake eutrophication do not explain this littoral greening. However, a cohesive response to it is essential for protecting some of the world's most valued lakes and the flora, fauna, and ecosystem services they sustain. 
    more » « less
  4. Abstract

    Sewage released from lakeside development can reshape ecological communities. Nearshore periphyton can rapidly assimilate sewage‐associated nutrients, leading to increases of filamentous algal abundance, thus altering both food abundance and quality for grazers. In Lake Baikal, a large, ultra‐oligotrophic, remote lake in Siberia, filamentous algal abundance has increased near lakeside developments, and localized sewage input is the suspected cause. These shifts are of particular interest in Lake Baikal, where endemic littoral biodiversity is high, lakeside settlements are mostly small, tourism is relatively high (~1.2 million visitors annually), and settlements are separated by large tracts of undisturbed shoreline, enabling investigation of heterogeneity and gradients of disturbance. We surveyed sites along 40 km of Baikal's southwestern shore for sewage indicators—pharmaceuticals and personal care products (PPCPs) and microplastics—as well as periphyton and macroinvertebrate abundance and indicators of food web structure (stable isotopes and fatty acids). Summed PPCP concentrations were spatially related to lakeside development. As predicted, lakeside development was associated with more filamentous algae and lower abundance of sewage‐sensitive mollusks. Periphyton and macroinvertebrate stable isotopes and essential fatty acids suggested that food web structure otherwise remained similar across sites; yet, the invariance of amphipod fatty acid composition, relative to periphyton, suggested that grazers adjust behavior or metabolism to compensate for different periphyton assemblages. Our results demonstrate that even low levels of human disturbance can result in spatial heterogeneity of nearshore ecological responses, with potential for changing trophic interactions that propagate through the food web.

     
    more » « less
  5. Abstract

    Climate warming impacts ecosystems through multiple interacting pathways, including via direct thermal responses of individual taxa and the combined responses of closely interacting species. In this study, we examined how warming and infection by an oomycete parasite (Saprolegnia) affect the dominant zooplankter of Russia's Lake Baikal, the endemic copepodEpischurella baikalensis. We used a combination of laboratory experiments, long‐term monitoring data, and population modeling. Experiments showed a large difference in the thermal optima of host and parasite, with strong negative effects of warm temperatures onE. baikalensissurvival and reproduction and a negative effect ofSaprolegniainfection on survival.Saprolegniainfection had an unexpected positive effect onE. baikalensisreproductive output, which may be consistent with fecundity compensation by females exposed to the parasite. Long‐term monitoring data suggested thatSaprolegniainfections were most common during the warmest periods of the year. Population models, parameterized with experimental and literature data, correctly predicted the timing ofSaprolegniaepizootics, but overestimated the negative effect of warming onE. baikalensispopulations. Models suggest that diel vertical migration may allowE. baikalensisto escape the negative effects of increasing temperatures and parasitism and enableE. baikalensisto persist in the face of moderate warming of Lake Baikal. Our results contribute to understanding of how warming and parasitism interact to affect the pelagic ecosystems of cold lakes and oceans and how the consequences of these interacting stressors can vary seasonally, spatially, and interannually.

     
    more » « less
  6. Abstract

    Among its many impacts, climate warming is leading to increasing winter air temperatures, decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes and their watershed. Understanding and predicting the consequences of these changes is impeded by a shortage of winter‐period studies on most aspects of Great Lake limnology. In this review, we summarize what is known about the Great Lakes during their 3–6 months of winter and identify key open questions about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen lakes. Existing studies show that winter conditions have important effects on physical, biogeochemical, and biological processes, not only during winter but in subsequent seasons as well. Ice cover, the extent of which fluctuates dramatically among years and the five lakes, emerges as a key variable that controls many aspects of the functioning of the Great Lakes ecosystem. Studies on the properties and formation of Great Lakes ice, its effect on vertical and horizontal mixing, light conditions, and biota, along with winter measurements of fundamental state and rate parameters in the lakes and their watersheds are needed to close the winter knowledge gap. Overcoming the formidable logistical challenges of winter research on these large and dynamic ecosystems may require investment in new, specialized research infrastructure. Perhaps more importantly, it will demand broader recognition of the value of such work and collaboration between physicists, geochemists, and biologists working on the world's seasonally freezing lakes and seas.

     
    more » « less