skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ozersky, Ted"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Climate warming is especially pronounced in winter and at high latitudes. Warming winters are leading to the loss of lake ice and changing snow cover on lakes. Historically, lake scientists have paid less attention to the ice cover period, leading to data and theory gaps about the role of winter conditions in lake ecosystem function and the consequences of changing winters. Here we use simple models to show that the latitudinal interaction between ice cover duration and light flux seasonality has profound and underappreciated implications for lakes. Our models focus on light and temperature, two key drivers of ecosystem processes. We show that the relative amount of light arriving in lakes during ice cover increases non‐linearly with latitude and that the light climate of high latitude lakes is much more sensitive to changing winter conditions than that of lower latitude lakes. We also demonstrate that the synchronicity between high light and warm temperatures may decrease with latitude, with implications for primary and secondary production. Our results suggest that ice loss may lead to greater relative change to productivity and biotic interactions in higher latitude lakes and also offer several testable predictions for understanding the consequences of climate‐induced changes across latitudinal gradients. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Climate change is reducing winter ice cover on lakes; yet, the full societal and environmental consequences of this ice loss are poorly understood. The socioeconomic implications of declining ice include diminished access to ice-based cultural activities, safety concerns in traversing ice, changes in fisheries, increases in shoreline erosion, and declines in water storage. Longer ice-free seasons allow more time and capacity for water to warm, threatening water quality and biodiversity. Food webs likely will reorganize, with constrained availability of ice-associated and cold-water niches, and ice loss will affect the nature, magnitude, and timing of greenhouse gas emissions. Examining these rapidly emerging changes will generate more-complete models of lake dynamics, and transdisciplinary collaborations will facilitate translation to effective management and sustainability. 
    more » « less
  4. The productivity of aquatic ecosystems depends on the supply of limiting nutrients. The invasion of the Laurentian Great Lakes, the world’s largest freshwater ecosystem, by dreissenid (zebra and quagga) mussels has dramatically altered the ecology of these lakes. A key open question is how dreissenids affect the cycling of phosphorus (P), the nutrient that limits productivity in the Great Lakes. We show that a single species, the quagga mussel, is now the primary regulator of P cycling in the lower four Great Lakes. By virtue of their enormous biomass, quagga mussels sequester large quantities of P in their tissues and dramatically intensify benthic P exchanges. Mass balance analysis reveals a previously unrecognized sensitivity of the Great Lakes ecosystem, where P availability is now regulated by the dynamics of mussel populations while the role of the external inputs of phosphorus is suppressed. Our results show that a single invasive species can have dramatic consequences for geochemical cycles even in the world’s largest aquatic ecosystems. The ongoing spread of dreissenids across a multitude of lakes in North America and Europe is likely to affect carbon and nutrient cycling in these systems for many decades, with important implications for water quality management. 
    more » « less
  5. null (Ed.)
    Abstract Nearshore (littoral) habitats of clear lakes with high water quality are increasingly experiencing unexplained proliferations of filamentous algae that grow on submerged surfaces. These filamentous algal blooms (FABs) are sometimes associated with nutrient pollution in groundwater, but complex changes in climate, nutrient transport, lake hydrodynamics, and food web structure may also facilitate this emerging threat to clear lakes. A coordinated effort among members of the public, managers, and scientists is needed to document the occurrence of FABs, to standardize methods for measuring their severity, to adapt existing data collection networks to include nearshore habitats, and to mitigate and reverse this profound structural change in lake ecosystems. Current models of lake eutrophication do not explain this littoral greening. However, a cohesive response to it is essential for protecting some of the world's most valued lakes and the flora, fauna, and ecosystem services they sustain. 
    more » « less
  6. Abstract Among its many impacts, climate warming is leading to increasing winter air temperatures, decreasing ice cover extent, and changing winter precipitation patterns over the Laurentian Great Lakes and their watershed. Understanding and predicting the consequences of these changes is impeded by a shortage of winter‐period studies on most aspects of Great Lake limnology. In this review, we summarize what is known about the Great Lakes during their 3–6 months of winter and identify key open questions about the physics, chemistry, and biology of the Laurentian Great Lakes and other large, seasonally frozen lakes. Existing studies show that winter conditions have important effects on physical, biogeochemical, and biological processes, not only during winter but in subsequent seasons as well. Ice cover, the extent of which fluctuates dramatically among years and the five lakes, emerges as a key variable that controls many aspects of the functioning of the Great Lakes ecosystem. Studies on the properties and formation of Great Lakes ice, its effect on vertical and horizontal mixing, light conditions, and biota, along with winter measurements of fundamental state and rate parameters in the lakes and their watersheds are needed to close the winter knowledge gap. Overcoming the formidable logistical challenges of winter research on these large and dynamic ecosystems may require investment in new, specialized research infrastructure. Perhaps more importantly, it will demand broader recognition of the value of such work and collaboration between physicists, geochemists, and biologists working on the world's seasonally freezing lakes and seas. 
    more » « less